AzureQueue Table Engine
This engine provides an integration with Azure Blob Storage ecosystem, allowing streaming data import.
Create Table
CREATE TABLE test (name String, value UInt32)
ENGINE = AzureQueue(...)
[SETTINGS]
[mode = '',]
[after_processing = 'keep',]
[keeper_path = '',]
...
Engine parameters
AzureQueue
parameters are the same as AzureBlobStorage
table engine supports. See parameters section here.
Similar to the AzureBlobStorage table engine, users can use Azurite emulator for local Azure Storage development. Further details here.
Example
CREATE TABLE azure_queue_engine_table
(
`key` UInt64,
`data` String
)
ENGINE = AzureQueue('DefaultEndpointsProtocol=http;AccountName=devstoreaccount1;AccountKey=Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==;BlobEndpoint=http://azurite1:10000/devstoreaccount1/;', 'testcontainer', '*', 'CSV')
SETTINGS mode = 'unordered'
Settings
The set of supported settings is the same as for S3Queue
table engine, but without s3queue_
prefix. See full list of settings settings.
To get a list of settings, configured for the table, use system.azure_queue_settings
table. Available from 24.10
.
Description
SELECT
is not particularly useful for streaming import (except for debugging), because each file can be imported only once. It is more practical to create real-time threads using materialized views. To do this:
- Use the engine to create a table for consuming from specified path in S3 and consider it a data stream.
- Create a table with the desired structure.
- Create a materialized view that converts data from the engine and puts it into a previously created table.
When the MATERIALIZED VIEW
joins the engine, it starts collecting data in the background.
Example:
CREATE TABLE azure_queue_engine_table (key UInt64, data String)
ENGINE=AzureQueue('<endpoint>', 'CSV', 'gzip')
SETTINGS
mode = 'unordered';
CREATE TABLE stats (key UInt64, data String)
ENGINE = MergeTree() ORDER BY key;
CREATE MATERIALIZED VIEW consumer TO stats
AS SELECT key, data FROM azure_queue_engine_table;
SELECT * FROM stats ORDER BY key;
Virtual columns
_path
— Path to the file._file
— Name of the file.
For more information about virtual columns see here.
Introspection
Enable logging for the table via the table setting enable_logging_to_s3queue_log=1
.
Introspection capabilities are the same as the S3Queue table engine with several distinct differences:
Use the
system.azure_queue
for the in-memory state of the queue for server versions >= 25.1. For older versions use thesystem.s3queue
(it would contain information forazure
tables as well).Enable the
system.azure_queue_log
via the main ClickHouse configuration e.g.<azure_queue_log>
<database>system</database>
<table>azure_queue_log</table>
</azure_queue_log>
This persistent table has the same information as system.s3queue
, but for processed and failed files.
The table has the following structure:
CREATE TABLE system.azure_queue_log
(
`hostname` LowCardinality(String) COMMENT 'Hostname',
`event_date` Date COMMENT 'Event date of writing this log row',
`event_time` DateTime COMMENT 'Event time of writing this log row',
`database` String COMMENT 'The name of a database where current S3Queue table lives.',
`table` String COMMENT 'The name of S3Queue table.',
`uuid` String COMMENT 'The UUID of S3Queue table',
`file_name` String COMMENT 'File name of the processing file',
`rows_processed` UInt64 COMMENT 'Number of processed rows',
`status` Enum8('Processed' = 0, 'Failed' = 1) COMMENT 'Status of the processing file',
`processing_start_time` Nullable(DateTime) COMMENT 'Time of the start of processing the file',
`processing_end_time` Nullable(DateTime) COMMENT 'Time of the end of processing the file',
`exception` String COMMENT 'Exception message if happened'
)
ENGINE = MergeTree
PARTITION BY toYYYYMM(event_date)
ORDER BY (event_date, event_time)
SETTINGS index_granularity = 8192
COMMENT 'Contains logging entries with the information files processes by S3Queue engine.'
Example:
SELECT *
FROM system.azure_queue_log
LIMIT 1
FORMAT Vertical
Row 1:
──────
hostname: clickhouse
event_date: 2024-12-16
event_time: 2024-12-16 13:42:47
database: default
table: azure_queue_engine_table
uuid: 1bc52858-00c0-420d-8d03-ac3f189f27c8
file_name: test_1.csv
rows_processed: 3
status: Processed
processing_start_time: 2024-12-16 13:42:47
processing_end_time: 2024-12-16 13:42:47
exception:
1 row in set. Elapsed: 0.002 sec.